e-Cow: an animal model that predicts herbage intake, milk yield and live weight change in dairy cows grazing temperate pastures, with and without supplementary feeding.
نویسندگان
چکیده
This animal simulation model, named e-Cow, represents a single dairy cow at grazing. The model integrates algorithms from three previously published models: a model that predicts herbage dry matter (DM) intake by grazing dairy cows, a mammary gland model that predicts potential milk yield and a body lipid model that predicts genetically driven live weight (LW) and body condition score (BCS). Both nutritional and genetic drives are accounted for in the prediction of energy intake and its partitioning. The main inputs are herbage allowance (HA; kg DM offered/cow per day), metabolisable energy and NDF concentrations in herbage and supplements, supplements offered (kg DM/cow per day), type of pasture (ryegrass or lucerne), days in milk, days pregnant, lactation number, BCS and LW at calving, breed or strain of cow and genetic merit, that is, potential yields of milk, fat and protein. Separate equations are used to predict herbage intake, depending on the cutting heights at which HA is expressed. The e-Cow model is written in Visual Basic programming language within Microsoft Excel®. The model predicts whole-lactation performance of dairy cows on a daily basis, and the main outputs are the daily and annual DM intake, milk yield and changes in BCS and LW. In the e-Cow model, neither herbage DM intake nor milk yield or LW change are needed as inputs; instead, they are predicted by the e-Cow model. The e-Cow model was validated against experimental data for Holstein-Friesian cows with both North American (NA) and New Zealand (NZ) genetics grazing ryegrass-based pastures, with or without supplementary feeding and for three complete lactations, divided into weekly periods. The model was able to predict animal performance with satisfactory accuracy, with concordance correlation coefficients of 0.81, 0.76 and 0.62 for herbage DM intake, milk yield and LW change, respectively. Simulations performed with the model showed that it is sensitive to genotype by feeding environment interactions. The e-Cow model tended to overestimate the milk yield of NA genotype cows at low milk yields, while it underestimated the milk yield of NZ genotype cows at high milk yields. The approach used to define the potential milk yield of the cow and equations used to predict herbage DM intake make the model applicable for predictions in countries with temperate pastures.
منابع مشابه
Sward Factors Influence on Pasture Dry Matter Intake of Grazing Dairy Cows: A Review
Successful pasture-based milk production systems pivot on balancing dairy cows’ feed requirements with seasonal and annual fluctuations in pasture production. In order to maximise cow production from grazing dairy systems, it is necessary to reach an efficient utilization of grazed grass for feeding cows and the development of appropriate grazing management systems designed to maximize daily pa...
متن کاملEffects of Feeding Rumen Protected Choline and Vitamin E on Milk Yield, Milk Composition, Dry Matter Intake, BodyCondition Score and Body Weight in Early Lactating Dairy Cows
Twenty four primiparous and multiparous Holstein cows on early lactation, beginning five weeks postpartum, were used for four weeks to investigate the effects of supplemention of rumen-protected choline (RPC) or vitamin E on milk yield, milk composition, dry matter intake, body condition score and body weight. The cows were randomly assigned to one of the following treatments: I)no supplement (...
متن کاملEffect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.
A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumula...
متن کاملAnimal Factors Condition Milk Performance and Quality of Grazing Dairy Cows
The base of this review is to consider the relevant role that animal factors (potential milk yield, body weight, body condition score, state of lactation, parity and fertility) play on milk performance (considering the energy balance and the rumen function across the full lactation curve of animals) and milk quality (milk protein content, milk fat content, milk lactose content, vitamins, minera...
متن کاملDirect and carryover effect of post-grazing sward height on total lactation dairy cow performance.
Grazing pastures to low post-grazing sward heights (PGSH) is a strategy to maximise the quantity of grazed grass in the diet of dairy cows within temperate grass-based systems. Within Irish spring-calving systems, it was hypothesised that grazing swards to very low PGSH would increase herbage availability during early lactation but would reduce dairy cow performance, the effect of which would p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Animal : an international journal of animal bioscience
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012